Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(10): 1071-1082, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672625

RESUMO

Flow cytometry is a potential technology for in situ life detection on icy moons (such as Enceladus and Europa) and on the polar ice caps of Mars. We developed a method for using flow cytometry to positively identify four classes of biomarkers using exogenous fluorescent stains: nucleic acids, proteins, carbohydrates, and lipids. We demonstrated the effectiveness of exogenous stains with six known organisms and known abiotic material and showed that the cytometer is easily able to distinguish between the known organisms and the known abiotic material using the exogenous stains. To simulate a life-detection experiment on an icy world lander, we used six natural samples with unknown biotic and abiotic content. We showed that flow cytometry can identify all four biomarkers using the exogenous stains and can separate the biotic material from the known abiotic material on scatter plots. Exogenous staining techniques would likely be used in conjunction with intrinsic fluorescence, clustering, and sorting for a more complete and capable life-detection instrument on an icy moon lander.

2.
Phys Rev E ; 102(4-1): 043105, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212737

RESUMO

We have used video imaging and interferometric techniques to investigate the dynamics of spreading of drops of ^{4}He on a solid surface for temperatures ranging from 5.2 K (near the critical point) to 2.2 K (near T_{λ}). After an initial transient, the drops become pancake-shaped with a radius that grows as R(t)≈t^{α}, with α=0.149±0.002. The drops eventually begin to shrink due to evaporation driven by gravitational and curvature effects, which limits their lifetime to about 1000 s. Although helium completely wets the substrate, and the spreading takes place over a pre-existing adsorbed film, a distinct contact line with a contact angle of order one degree is visible throughout this process.

3.
Sci Rep ; 7(1): 10173, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860641

RESUMO

Resistive-pulse sensing is a label-free method for characterizing individual particles as they pass through ion-conducting channels or pores. During a resistive pulse experiment, the ionic current through a conducting channel is monitored as particles suspended in the solution translocate through the channel. The amplitude of the current decrease during a translocation, or 'pulse', depends not only on the ratio of the particle and channel sizes, but also on the particle position, which is difficult to resolve with the resistive pulse signal alone. We present experiments of simultaneous electrical and optical detection of particles passing through microfluidic channels to resolve the positional dependencies of the resistive pulses. Particles were tracked simultaneously in the two signals to create a mapping of the particle position to resistive pulse amplitude at the same instant in time. The hybrid approach will improve the accuracy of object characterization and will pave the way for observing dynamic changes of the objects such as deformation or change in orientation. This combined approach of optical detection and resistive pulse sensing will join with other attempts at hybridizing high-throughput detection techniques such as imaging flow cytometry.

4.
PLoS One ; 7(3): e33339, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22413016

RESUMO

This paper examines the proximity of authors to those they cite using degrees of separation in a co-author network, essentially using collaboration networks to expand on the notion of self-citations. While the proportion of direct self-citations (including co-authors of both citing and cited papers) is relatively constant in time and across specialties in the natural sciences (10% of references) and the social sciences (20%), the same cannot be said for citations to authors who are members of the co-author network. Differences between fields and trends over time lie not only in the degree of co-authorship which defines the large-scale topology of the collaboration network, but also in the referencing practices within a given discipline, computed by defining a propensity to cite at a given distance within the collaboration network. Overall, there is little tendency to cite those nearby in the collaboration network, excluding direct self-citations. These results are interpreted in terms of small-scale structure, field-specific citation practices, and the value of local co-author networks for the production of knowledge and for the accumulation of symbolic capital. Given the various levels of integration between co-authors, our findings shed light on the question of the availability of 'arm's length' expert reviewers of grant applications and manuscripts.


Assuntos
Autoria , Comportamento Cooperativo , Prática Profissional/estatística & dados numéricos , Algoritmos , Humanos , Modelos Estatísticos
5.
Phys Rev Lett ; 96(2): 025501, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486591

RESUMO

A phenomenon recently coined as overaging implies a slowdown in the collective (slow) relaxation modes of a glass when a transient shear strain is imposed. We are able to reproduce this behavior in simulations of a supercooled polymer melt by imposing instantaneous shear deformations. The increase in relaxation times Delta(tau(1/2)) rises rapidly with deformation, becoming exponential in the plastic regime, and is accompanied by significant changes in the distribution of these relaxation times throughout the system. This overaging is distinct from standard aging. We find increases in pressure, bond-orientational order, and in the average energy of the inherent structures () of the system, all dependent on the size of the deformation. The observed change in behavior from elastic to plastic deformation suggests a link to the physics of the "jammed state."

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 1): 041501, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15600413

RESUMO

We study the onset of rigidity near the glass transition (GT) in a short-chain polymer melt modelled by a bead-spring model, where all beads interact with Lennard-Jones potentials. The properties of the system are examined above and below the GT. In order to minimize high-cooling-rate effects and computational times, equilibrium configurations are reached via isothermal compression. We monitor quantities such as the heat capacity CP, the short-time diffusion constants D, the viscosity eta , and the shear modulus; the time-dependent shear modulus Gt is compared with the shear modulus mu obtained from an externally applied instantaneous shear. We give a detailed analysis of the effects of such shearing on the system, both locally and globally. It is found that the polymeric glass displays long-time rigid behavior only below a temperature T1 , where T1 < TG. Furthermore, the linear and nonlinear relaxation regimes under applied shear are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...